Bacteria outline-- CHAPTER 19

• Bacteria

- Structure and Function
- Prokaryote & Eukaryote Evolution
 - Cellular Evolution
 - Current evidence indicates that eukaryotes evolved from prokaryotes between 1 and 1.5 billion years ago
 - Two theories:
 - 1. Infolding theory
 - 2. Endosymbiotic theory
 - Infolding Theory
 - The infolding of the prokaryotic plasma membrane gave rise to eukaryotic organelles.
 - Endosymbiotic Theory
 - Endosymbiosis refers to one species living within another(the host)
 - Movement of smaller photosynthetic & heterotrophic prokaryotes into larger prokaryotic host cells
 - Formed cell organelles
 - Prokaryotic & Eukaryotic Cells

- Earliest Prokaryotes
 - Most numerous organisms on Earth
 - Include all bacteria
 - Earliest fossils date 2.5 billion years old
- Classification of Life
 - Three Domains of Life
 - Archaea prokaryotes living in extreme habitats
 - Bacteria- Cyanobacteria and eubacteria
 - Eukarya Protozoans, fungi, plants, & animals
 - Kingdoms of Bacteria

Archaebacteria:

- \checkmark Found in harsh environments
- \checkmark Undersea volcanic vents, acidic hot springs, salty water

Eubacteria:

- \checkmark Called the true bacteria
- \checkmark Most bacteria are in this group
- ✓ Include photosynthetic Cyanobacteria

Characteristics of Bacteria

Bacterial Structure

- Microscopic prokaryotes
- No nucleus or membrane-bound organelles
- Contain ribosomes
- Single, circular chromosome in nucleoid region

- Protection
 - Cell Wall made of Peptidoglycan
 - May have a sticky coating called the Capsule for attachment to host or other bacteria
 - Sticky Bacterial Capsule
- Bacterial Structure
 - Have small rings of DNA called Plasmids
 - Unicellular
 - Small in size (0.5 to $2\mu m$)

- Bacterial Structure
 - Infoldings of cell membrane carry on photosynthesis & cellular respiration
 - Infoldings called Mesosomes
- Bacterial Structure
 - Most grow best at pH of 6.5 to 7.0
 - Many act as decomposers recycling nutrients
 - Some cause disease
 - Staphylococcus Bacterial (aka --Staph infection)
- Useful Bacteria
 Industry
 - Industry--Some bacteria can degrade oil, Used to clean up oil spills
 - Clean poison, wastes from water
 - Mine minerals from the ground
 - Food, beverages--Other uses for bacteria include making yogurt, cheese, and buttermilk.
 - Agriculture--Nitrogen fixers
 - Synthesize drugs through genetic engineering—insulin
 - Decomposers—like we saw in food web

- Flagella
 - Bacteria that are motile have appendages called flagella
 - Attached by Basal Body

- A bacteria can have one or many flagella
- Made of Flagellin
- Used for Classification
 - Monotrichous: 1 flagella
 - Lophotrichous: tuft at one end
 - Amphitrichous: tuft at both ends
 - Peritrichous: all around bacteria
- Pili
 - Short protein appendages
 - Smaller than flagella
 - Adhere bacteria to surfaces
 - Used in conjugation for Exchange of genetic information
 - Aid Flotation by increasing buoyancy
- Pili in Conjugation
- Bacterial Shapes
 - Shapes Are Used to Classify (DRAW shapes next to bacteria type)
 - Bacillus: Rod shaped
 - Coccus: Spherical (round)
 - Vibrio: Comma shaped with flagella
 - Spirillum: Spiral shape
 - Spirochete: wormlike spiral shape
- Grouping of Bacteria
 - Diplo- Groups of two
 - Strepto- chains
 - Staphylo- Grapelike clusters
 - Diplococcus
 - Staphylococcus
 - Streptobacilli
 - Spirillum
 - Spirochetes
 - Leptospira
- Bacterial Kingdoms
 - Archaebacteria
 - Lack peptidoglycan in cell walls
 - Have different lipids in their cell membrane
 - Different types of ribosomes
 - Very different gene sequences

- Archaebacteria can live in extremely harsh environments
- They do not require oxygen and can live in extremely salty environments as well as extremely hot environments
- Called the Ancient bacteria
- Subdivided into 3 groups:
 - ✓ Methanogens
 - ✓ Thermoacidophiles
 - ✓ Extreme Halophiles
- Methanogens
 - Live in anaerobic environments (no oxygen)
 - Get energy by changing $H_2 \& CO_2$ into methane gas
 - Found in swamps, sewage treatment plants, digestive tracts of animals
 - Break down cellulose in a cow's stomach
 - Produce marsh (methane) gas
- Extreme Halophiles
 - Live in very salty water
 - Use salt to generate ATP (energy)
 - Dead Sea, Great Salt Lake inhabitants
- Thermoacidophiles or Thermophiles
 - Live in extremely hot environments
 - Found in volcanic vents, hot springs, cracks on ocean floor that leak acid
- Kingdom Eubacteria—True bacteria (See p 472, FIGURE 19-2 in book)
 - Characteristics
 - 3 basic shapes (coccus, bacillus, spirilla)
 - Most are heterotrophic (can't make their own food)
 - May be aerobic or anaerobic
 - Identified by Gram staining
- Gram Staining
 - Developed in 1884 by Hans Gram
 - Bacteria treated with purple Crystal Violet & red Safranin stains
 - Cell walls either stain purple or reddish pink
- Gram Positive
 - Have thick layer of peptidoglycan (protein-sugar complex)
 - Single lipid layer
 - Stain purple
 - Can be treated with antibiotics
- Gram Positive Bacteria
 - ✓ Lactobacilli (makes yogurt & buttermilk)
 - ✓ Actinomycetes (make antibiotics)
 - ✓ Clostridium (lockjaw bacteria)
 - ✓ Streptococcus (strep throat)
 - ✓ Staphylococcus (staph infections)
- Gram Negative Bacteria
 - Thin layer of peptidoglycan in cell wall
 - Extra thick layer of lipids
 - Stain pink or reddish
 - Hard to treat with antibiotics
 - Some photosynthetic but make sulfur not oxygen
 - Some fix nitrogen for plants

- Gram Negative
 - Rhizobacteria grow in root nodules of legumes (soybeans, peanuts)
 - Fix N₂ from air into usable ammonia
 - Rickettsiae are parasitic bacteria carried by ticks
 - Cause Lyme disease & Rocky Mountain Spotted Fever
- Cyanobacteria
 - Gram negative
 - Photosynthetic
 - Called blue-green bacteria
 - Contain phycocyanin (red-blue) pigments & chlorophyll
 - May be red, yellow, brown, black, or blue-green
 - May grow in chains (Oscillatoria)
 - Have Heterocysts to help fix N₂
 - First to re-enter devastated areas
 - Some cause Eutrophication (use up O2 when die & decompose in water)
- Spirochetes
 - Gram positive
 - Flagella at each end
 - Move in corkscrew motion
 - Some aerobic; others anaerobic
 - May be free living, parasitic, or symbiotic
- Enteric Bacteria
 - Gram negative
 - Can live in aerobic & anaerobic habitats
 - Includes *E. coli* in intestines
 - Salmonella causes food poisoning
- Chemoautotrophs
 - Gram negative
 - Obtain energy from minerals like iron
 - Found in freshwater ponds

Nutrition, Respiration, and Reproduction

- Modes of Nutrition
 - Saprobes feed on dead organic matter
 - Parasites feed on a host cell
 - Photoautotroph use sunlight to make food
 - Chemoautotroph oxidize inorganic matter such as iron or sulfur to make food
- Methods of Respiration
 - Obligate Aerobes require O₂ (tuberculosis bacteria)
 - Obligate Anaerobes die if O₂ is present (tetanus)
 - Facultative Anaerobes don't need O₂, but aren't killed by it (*E. coli*)
- Bacterial Respiration
 - Anaerobes carry on fermentation
 - Aerobes carry on cellular respiration
- Reproduction
 - Bacteria reproduce asexually by binary fission
 - Single chromosome replicates & then cell divides
 - Rapid
 - All new cells identical (clones)
- Binary Fission E. Coli

Binary Fission in Bacteria

- Reproduction
 - Bacteria reproduce sexually by Conjugation
 - Form a tube between 2 bacteria to exchange genetic material
 - Held together by pili
 - New cells NOT identical
- Spore Formation
 - Form endospore whenever when habitat conditions become harsh (little food)

- Able to survive for long periods of time as endosperm
- Difficult to destroy (heat resistant)
- Transduction & Transformation
 - Genetically change bacteria
 - May become antibiotic resistant
 - Transformed bacteria pick up pieces of DNA from dead bacterial cells
 - Transduction viruses carry foreign DNA to bacteria; used to make insulin

Pathenogenic Bacteria

- Pathogens
 - Called germs or microbes
 - Cause disease
 - May produce poisons or toxins
 - Endotoxins released after bacteria die (E. coli)
 - Exotoxins released by Gram + bacteria (C. tetani)
- GERM theory: Infectious diseases are caused microorganisms of different types.
 - Some diseases are caused by viruses, bacteria, and fungi.
 - Others caused by materials in the environment
 - Others are inherited
- Diseases caused by bacteria—see p 486 FIG 19-13
- Diseases caused by viruses—see p 488 FIG 19-14