Bacteria outline—CHAPTER 19

- **Bacteria**
 Structure and Function
- **Prokaryote & Eukaryote Evolution**
 Cellular Evolution
 - Current evidence indicates that eukaryotes evolved from prokaryotes between 1 and 1.5 billion years ago
 - Two theories:
 1. Infolding theory
 2. Endosymbiotic theory
 - **Infolding Theory**
 - The infolding of the prokaryotic plasma membrane gave rise to eukaryotic organelles.
 - **Endosymbiotic Theory**
 - Endosymbiosis refers to one species living within another (the host)
 - Movement of smaller photosynthetic & heterotrophic prokaryotes into larger prokaryotic host cells
 - Formed cell organelles
- **Prokaryotic & Eukaryotic Cells**

![Prokaryotic and Eukaryotic Cells](image)

- **Earliest Prokaryotes**
 - Most numerous organisms on Earth
 - Include all bacteria
 - Earliest fossils date 2.5 billion years old
- **Classification of Life**
 - Three Domains of Life
 - **Archaea**—prokaryotes living in extreme habitats
 - **Bacteria**—Cyanobacteria and eubacteria
 - **Eukarya**—Protozoans, fungi, plants, & animals
 - **Kingdoms of Bacteria**
 - **Archaeabacteria:**
 - Found in harsh environments
 - Undersea volcanic vents, acidic hot springs, salty water
 - **Eubacteria:**
 - Called the true bacteria
 - Most bacteria are in this group
 - Include photosynthetic Cyanobacteria

Characteristics of Bacteria
- **Bacterial Structure**
- Microscopic prokaryotes
- No nucleus or membrane-bound organelles
- Contain ribosomes
- Single, circular chromosome in nucleoid region

- Protection
 - Cell Wall made of Peptidoglycan
 - May have a sticky coating called the Capsule for attachment to host or other bacteria
 - Sticky Bacterial Capsule

- Bacterial Structure
 - Have small rings of DNA called Plasmids
 - Unicellular
 - Small in size (0.5 to 2μm)

- Bacterial Structure
 - Infoldings of cell membrane carry on photosynthesis & cellular respiration
 - Infoldings called Mesosomes

- Most grow best at pH of 6.5 to 7.0
 - Many act as decomposers recycling nutrients
 - Some cause disease
 - Staphylococcus Bacterial (aka --Staph infection)

- Useful Bacteria
 - Industry--Some bacteria can degrade oil, Used to clean up oil spills
 - Clean poison, wastes from water
 - Mine minerals from the ground
 - Food, beverages--Other uses for bacteria include making yogurt, cheese, and buttermilk.
 - Agriculture--Nitrogen fixers
 - Synthesize drugs through genetic engineering—insulin
 - Decomposers—like we saw in food web
• **Flagella**
 • Bacteria that are motile have appendages called flagella
 • Attached by Basal Body

 ![Diagram of Flagella](image)

• **A bacteria can have one or many flagella**
• **Made of Flagellin**
• **Used for Classification**
 • Monotrichous: 1 flagella
 • Lophotrichous: tuft at one end
 • Amphitrichous: tuft at both ends
 • Peritrichous: all around bacteria

• **Pili**
 • Short protein appendages
 • Smaller than flagella
 • Adhere bacteria to surfaces
 • Used in conjugation for Exchange of genetic information
 • Aid Flotation by increasing buoyancy

• **Pili in Conjugation**
• **Bacterial Shapes**
 • Shapes Are Used to Classify (DRAW shapes next to bacteria type)
 • Bacillus: Rod shaped
 • Coccus: Spherical (round)
 • Vibrio: Comma shaped with flagella
 • Spirillum: Spiral shape
 • Spirochete: wormlike spiral shape

• **Grouping of Bacteria**
 • Diplo- Groups of two
 • Strepto- chains
 • Staphylo- Grapelike clusters
 • Diplococcus
 • Staphylococcus
 • Streptobacilli
 • Spirillum
 • Spirochetes
 • *Leptospira*

• **Bacterial Kingdoms**
 • **Archaeabacteria**
 • Lack peptidoglycan in cell walls
 • Have different lipids in their cell membrane
 • Different types of ribosomes
 • Very different gene sequences
Archaebacteria can live in extremely harsh environments
• They do not require oxygen and can live in extremely salty environments as well as extremely hot environments
• Called the Ancient bacteria
• Subdivided into 3 groups:
 ✓ Methanogens
 ✓ Thermoacidophiles
 ✓ Extreme Halophiles

• Methanogens
 • Live in anaerobic environments (no oxygen)
 • Get energy by changing H_2 & CO_2 into methane gas
 • Found in swamps, sewage treatment plants, digestive tracts of animals
 • Break down cellulose in a cow’s stomach
 • Produce marsh (methane) gas

• Extreme Halophiles
 • Live in very salty water
 • Use salt to generate ATP (energy)
 • Dead Sea, Great Salt Lake inhabitants

• Thermoacidophiles or Thermophiles
 • Live in extremely hot environments
 • Found in volcanic vents, hot springs, cracks on ocean floor that leak acid

• Kingdom Eubacteria—True bacteria (See p 472, FIGURE 19-2 in book)
 • Characteristics
 • 3 basic shapes (coccus, bacillus, spirilla)
 • Most are heterotrophic (can’t make their own food)
 • May be aerobic or anaerobic
 • Identified by Gram staining

• Gram Staining
 • Developed in 1884 by Hans Gram
 • Bacteria treated with purple Crystal Violet & red Safranin stains
 • Cell walls either stain purple or reddish pink

• Gram Positive
 • Have thick layer of peptidoglycan (protein-sugar complex)
 • Single lipid layer
 • Stain purple
 • Can be treated with antibiotics

• Gram Positive Bacteria
 ✓ Lactobacilli (makes yogurt & buttermilk)
 ✓ Actinomycetes (make antibiotics)
 ✓ Clostridium (lockjaw bacteria)
 ✓ Streptococcus (strep throat)
 ✓ Staphylococcus (staph infections)

• Gram Negative Bacteria
 • Thin layer of peptidoglycan in cell wall
 • Extra thick layer of lipids
 • Stain pink or reddish
 • Hard to treat with antibiotics
 • Some photosynthetic but make sulfur not oxygen
 • Some fix nitrogen for plants
- **Gram Negative**
 - Rhizobacteria grow in root nodules of legumes (soybeans, peanuts)
 - Fix N\textsubscript{2} from air into usable ammonia
 - Rickettsiae are parasitic bacteria carried by ticks
 - Cause Lyme disease & Rocky Mountain Spotted Fever

- **Cyanobacteria**
 - Gram negative
 - Photosynthetic
 - Called blue-green bacteria
 - Contain phycocyanin (red-blue) pigments & chlorophyll
 - May be red, yellow, brown, black, or blue-green
 - May grow in chains (*Oscillatoria*)
 - Have Heterocysts to help fix N\textsubscript{2}
 - First to re-enter devastated areas
 - Some cause Eutrophication (use up O\textsubscript{2} when die & decompose in water)

- **Spirochetes**
 - Gram positive
 - Flagella at each end
 - Move in corkscrew motion
 - Some aerobic; others anaerobic
 - May be free living, parasitic, or symbiotic

- **Enteric Bacteria**
 - Gram negative
 - Can live in aerobic & anaerobic habitats
 - Includes *E. coli* in intestines
 - *Salmonella* – causes food poisoning

- **Chemoautotrophs**
 - Gram negative
 - Obtain energy from minerals like iron
 - Found in freshwater ponds

Nutrition, Respiration, and Reproduction

- **Modes of Nutrition**
 - Saprobes – feed on dead organic matter
 - Parasites – feed on a host cell
 - Photoautotroph – use sunlight to make food
 - Chemoautotroph – oxidize inorganic matter such as iron or sulfur to make food

- **Methods of Respiration**
 - Obligate Aerobes – require O\textsubscript{2} (tuberculosis bacteria)
 - Obligate Anaerobes – die if O\textsubscript{2} is present (tetanus)
 - Facultative Anaerobes – don’t need O\textsubscript{2}, but aren’t killed by it (*E. coli*)

- **Bacterial Respiration**
 - Anaerobes carry on fermentation
 - Aerobes carry on cellular respiration

- **Reproduction**
 - Bacteria reproduce asexually by binary fission
 - Single chromosome replicates & then cell divides
 - Rapid
 - All new cells identical (clones)

- **Binary Fission *E. Coli***
Reproduction
- Bacteria reproduce sexually by Conjugation
- Form a tube between 2 bacteria to exchange genetic material
- Held together by pili
- New cells NOT identical

Spore Formation
- Form endospore whenever habitat conditions become harsh (little food)
 - Able to survive for long periods of time as endospore
 - Difficult to destroy (heat resistant)

Transduction & Transformation
- Genetically change bacteria
- May become antibiotic resistant
- Transformed bacteria pick up pieces of DNA from dead bacterial cells
- Transduction – viruses carry foreign DNA to bacteria; used to make insulin

Pathogenic Bacteria
- Pathogens
 - Called germs or microbes
 - Cause disease
 - May produce poisons or toxins
 - Endotoxins released after bacteria die (E. coli)
 - Exotoxins released by Gram + bacteria (C. tetani)

GERM theory: Infectious diseases are caused by microorganisms of different types.
- Some diseases are caused by viruses, bacteria, and fungi.
- Others caused by materials in the environment
- Others are inherited

- Diseases caused by bacteria—see p 486 FIG 19-13
- Diseases caused by viruses—see p 488 FIG 19-14